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Design of an Overlay Directional Coupler by
a Full-Wave Analysis
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Abstract —A full-wave analysis based on the spectral-domain method is
applied to coupled overlay microstrips, coupled inverted microstrips, and
coupled microstrips. Exclusive numerical data including frequerncy char-
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acteristics are included. A 10-dB overlay coupler was built according to the

. design theory, and experimental results are reported.

I. INTRODUCTION

T IS KNOWN THAT when the even- and odd-mode

propagation constants are identical, the isolation of a
directional coupler is theoretically infinite. However, in an
inhomogeneous structure such as microstrip, this condition
is not always satisfied. A dielectric overlay is one way to
improve the isolation of a microstrip coupler, by which the
difference in even- and odd-phase velocities can be greatly
reduced or even equalized [1]-[3]. To date, most of the

0018-9480,/83 /1200-1017$01.00 ©1983 IEEE



1018

TOP METAL PLATE
P 0

+

METAL STRIP Hs €ry

—dspw+ }
Nt KL L €r,
' e,l
\_ cround
Fig. 1. Cross-sectional view of coupled microstrip lines with a dielectric
overlay.

designs of overlay couplers are based on the quasi-TEM
approximation. In this paper, the spectral-domain method
[4] is used for a full-wave analysis with a view to designing
an overlay coupler.

After the procedure for analyzing coupled line structures
is introduced in Section II, we present in Section III
numerical results for coupled microstrip lines, coupled
overlay microstrip lines, and coupled inverted strip lines.
In Section 1V, directional couplers are designed and fabri-
cated. These couplers are tested and their performance
measured.

II. ANALYTICAL PROCESS

Fig. 1 shows the cross section of a coupled overlay
microstrip line structure. A full-wave analysis which in-
cludes the frequency dependent behavior of this structure
is formulated based on the spectral-domain method [4].
Note that this structure is general enough to represent two
other coupled line structures to be discussed in this paper.
For instance, the coupled microstrip line is obtained by
letting €,, = €,5 =1. The inverted microstrip line is realized
by choosing €,; = ¢€,4 =1. Therefore, once the formulation
for Fig. 1 is done, we can generate data for microstrip and
inverted strip structures in addition to overlay microstrip.
In all of the calculations and experiments, we let H; — 0.

Since the spectral-domain method is now well known, we
will not describe it in detail here. Basically, it solves the
eigenvalue problem in the Fourier transform domain to
obtain a pair of algebraic equations that relate the axial
and transverse currents on the strips with the axial and
tangential transverse electric fields at the interface contain-
ing strips. These solutions are subsequently transformed to
a set of linear equations by Galerkin’s procedure. This set
is solved for the propagation constant 8 or the guide
wavelength A .. Choice of the basis functions in Galerkin’s
procedure is important and, here, we used those proposed
by Schmidt and Itoh [5] and Jansen [6]. They have correct
edge singularities and can be analytically Fourier trans-
formed to Bessel functions for use in the spectral-domain
process. As a result of our convergence tests, we used three
basis functions for calculations in this paper.

Once the propagation constant is available, we can
calculate all the field coefficients in the cross section. From
these quantities we can compute the characteristic imped-

ance which is defined in this paper as [6]
ZO = 2Pavg/lz2

ey

where P, is the average power transmitted and I, is the
axial strip current.
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Fig. 3. Characteristic impedance versus frequency for the three struc-

tures. Parameters correspond to Fig, 2.

III.

Fig. 2 shows the dispersion characteristics for three types
of coupled strip structures. From this figure, we find the
following: the inverted configuration provides a frequency
at which the even- and odd-mode phase velocities coincide;
whereas, in the overlay construction, the difference in
phase velocities becomes very small though they never
become equal for this particular choice of structural
parameters.

Fig. 3 shows the characteristic impedance of these lines.
The impedances of the overlay structures are much less
frequency dependent.

NUMERICAL RESULTS
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(d) e, =¢,,=13.0

From these figures, we find that a very narrow-band
high-performance coupler may be constructed from the
inverted configuration. However, when wide-band opera-
tion is desired, as in most practical applications, the over-
lay configuration is preferred. The frequency-dependent
characteristics reported in Figs. 2 and 3 cannot be found
from quasi-TEM approximations.

Fig. 4 presents the even- and odd-characteristic imped-
ances of the overlay coupled microstrip line versus the

normalized strip width for four commonly used substrates
at a particular frequency. Fig. 5 shows the wavelength ratio
versus the normalized strip width for four different sub-
strates and five different strip spacing S/H;. It is seen that
there exists particular structures for which the even- and
odd-mode phase velocities are equal. Even if the phase
velocities are not equal, they are generally close to each
other. Fig. 6 shows the characteristic impedance and wave-
length ratio versus the normalized overlay thickness. Once
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Fig. 5. Even- and odd-mode wavelength ratio versus the ratio of W to
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again, the even- and odd-mode phase velocities can be
equalized.

IV. DESIGN OF SINGLE-SECTION DIRECTIONAL
COUPLER

Once a computer program is available which calculates
the even- and odd-mode characteristic impedance values
"Z; and Z3 and the phase constants B, and B, of the
coupled line, we make use of this program for designing a
directional coupler.

In a hypothetical situation where 8, = 8,, we could pro-
ceed according to the standard approach [7]. If such were
the case, the electrical length of the coupler is required to
be BL =a/2. Assuming all the ports are terminated with
Z,,, the matching condition requires

2578 = Z5;.- 2)
The desired coupling coefficient K is related to Z5 and Z§
via
Z5 - Z3
K=:2"0
5+ Zg

(3)

These two equations result in specific values of Z§ and Z;.
We can find W and S that provide these values of imped-
ance if all other structural parameters are fixed. We now
calculate 8 and find L.

In the present case, 8, # B,. We, therefore, initially as-
sume that the SL = 7/2 condition is satisfied and find W
and S. The length L is then determined from § of the
isolated line (S — oo) for the obtained value of W. This 8 is
usually close to the average of S8, and B,. Degradations of
the coupler performance due to this choice of L are studied
experimentally.

The design process may be summarized as follows.

i) Choose the center frequency, the substrate material,

1021
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Fig. 7. Overlay directional coupler. W, =3.84 mm, W, = 3.20 mm, H,
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Fig. 8. Coupling and isolation of the directional coupler with and

without a dielectric overlay.

and thickness. Other parameters such as the overlay
material and thickness if applicable.

if} Find Z§ and Z§ from (2) and (3).

iii) Obtain W and S values which result in Z§ and Z{ by
using the computer program developed in Section II or the
diagrams such as those in Fig. 4.

iv) If the coupling requirement cannot be satisfied or,
though it is satisfactory, the value of S is too small for
fabrication, we may choose a different substrate which has
a larger thickness and/or higher dielectric constant and
repeat the processes ii) and iii).

v) Finally, calculate 8 for an isolated line (S — o0) with
the obtained value of W and find the coupler length L such
that BL = = /2.

We have designed 10-dB, 6-dB, and 3-dB directional
couplers. Since our fabrication facility is rather crude, only
the 10-dB coupler was fabricated. Fig. 7 shows the struc-
ture, and Fig. 8 presents the measured results for the
microstrip directional coupler and the dielectric overlay
microstrip directional coupler. For these two structures, all
of the dimensions are identical except for the presence or
absence of the dielectric overlay. We can see that the
dielectric overlay can significantly improve the isolation.
This agrees with the works by Paolino [1]. A simple calcu-
lation shows that the relative propagation constant dif-
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ference between the even mode and the odd mode

B.

is only 0.54 percent in the dielectric overlay case and 7.35
percent in the coupled microstrip case. Additional mea-
surements for an inverted microstrip directional coupler
showed that at low frequencies, the relative propagation
constant difference is large, about 12.7 percent, so the
isolation is very poor.

In Fig. 7, the input and through arms of the coupler are
in line with the coupling section. Experimental results
showed that when these arms are perpendicular to the
coupled section, the dielectric overlay did not improve
the isolation. This is due to the bend existing between the
transmission line and the coupled line, thus generating
scattered waves. Dielectric overlays enhance the coupling
of scattered waves, implying that isolation is deteriorating.
In a configuration like Fig. 7 in which the input part is in
line with the coupler, there is no measurable reflection
caused by bends in the main line. From the network
analysis [7] for any directional coupler, the magnitude of
the reflected wave at the input port is equal to that of the
wave appearing from the “isolated” port, implying that as
the input VSWR increases, the isolation decreases. This
shows that the structure shown in Fig. 7 seems to be
practical.

X100 percent

V. CONCLUSION

In this paper, the spectral-domain approach was used for
studying the coupled dielectric overlay microstrip and cou-
pled inverted microstrip. The numerical computations were
carried out with a CDC Dual Cyber 170/750 computer.
The typical configuration time required for a structure at a
given frequency was about 1.05 s. We designed and tested
microstrip and overlay microstrip couplers. The frequency
characteristics are presented.
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